Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria.

نویسندگان

  • Tanya Prozorov
  • Pierre Palo
  • Lijun Wang
  • Marit Nilsen-Hamilton
  • DeAnna Jones
  • Daniel Orr
  • Surya K Mallapragada
  • Balaji Narasimhan
  • Paul C Canfield
  • Ruslan Prozorov
چکیده

Magnetotactic bacteria produce exquisitely ordered chains of uniform magnetite (Fe(3)O(4)) nanocrystals, and the use of the bacterial mms6 protein allows for the shape-selective synthesis of Fe(3)O(4) nanocrystals. Cobalt ferrite (CoFe(2)O(4)) nanoparticles, on the other hand, are not known to occur in living organisms. Here we report on the use of the recombinant mms6 protein in a templated synthesis of CoFe(2)O(4) nanocrystals in vitro. We have covalently attached the full-length mms6 protein and a synthetic C-terminal domain of mms6 protein to self-assembling polymers in order to template hierarchical CoFe(2)O(4) nanostructures. This new synthesis pathway enables facile room-temperature shape-specific synthesis of complex magnetic crystalline nanomaterials with particle sizes in the range of 40-100 nm that are difficult to produce using conventional techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Magnetic Properties in Cobalt Ferrite Nanocrystals

Cobalt ferrite (CoFe2O4) possesses excellent chemical stability, good mechanical hardness and a large positive first order crystalline anisotropy constant, which made this ferrite a promising candidate for magneto-optical recording media. In addition to precise control on the composition and structure of CoFe2O4, the success of its practical application will depend on the capability of controll...

متن کامل

Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor.

Monodisperse iron oxide nanocrystals were synthesized by a simplified method using iron chloride as precursor. In the presence of Cl ions, the as-produced iron oxide nanocrystals preferred a cubic shape with {100} facets exposed. The function of halogens including Cl and Br ions on stabilizing {100} facets of spinel structured iron oxides, rather than the regulation of thermolysis kinetics and ...

متن کامل

Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses

Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as t...

متن کامل

Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties.

Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and ec...

متن کامل

Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 1 3  شماره 

صفحات  -

تاریخ انتشار 2007